X-ray emission and the incidence of magnetic fields in the massive stars of the Orion Nebula Cluster

V. Petit1,23, G.A. Wade2, T. Montmerle3, L. Drissen1, L. Grosso1, F. Menard3

1Université Laval, Quebec, Canada
2Royal Military College of Canada, Canada
3Laboratoire d’astrophysique de Grenoble, France

Introduction

- Stellar magnetic fields are well known to produce X-rays in late-type, convective stars like the Sun.
- However, X-ray emission coming from OB stars is often explained by radiative instabilities resulting in a multitude of shocks in their winds (Lucy & White 1980, Owocki & Cohen 1999).
- The Chandra Orion Ultradepth Project (COUP) was dedicated to observing the Orion Nebula Cluster (ONC) in X-rays. The OBA sample (20 stars) was studied with the goal of disentangling the respective roles of winds and magnetic fields in producing X-rays (Stelzer et al. 2005).
- The production of X-rays by radiative shocks should be the dominant mechanism for the subsample of O to early-B stars which have «strong winds». However, aside from 2 of those stars, all targets showed X-ray intensity and/or variability which were inconsistent with the small shock model predictions.
- We have undertaken a study with ESPaDOnS to explore the role of magnetic fields in producing this diversity of X-ray behaviours.

Figure 1: Periodic X-ray modulation of the ONC star JW660. From Stelzer et al. (2005).

Observations

- 8 stars of the COUP «strong wind» OB subsample were observed with the echelle spectropolarimeter ESPaDOnS at CFHT. High resolution (R=65,000) measurements of Stokes I and V were obtained under good conditions, with an appreciable signal to noise ratio.
- The mean Stokes I and V profiles were extracted with the Least Square Deconvolution technique (LSD) of Donati et al. (1997), which allows the use of many lines to increase the level of detection of a magnetic field Stokes V signature.
- 2 stars show field signatures: \textit{β}2 Ori C (for which a field has already been detected by Donati et al. 2002) and Par 1772 (shown in Figure 2, along with the non-detection case \textit{β}1 Ori D).

Figure 2: Least Square Deconvolved profiles for \textit{β}1 Ori D and Par 1772. In black are the mean Stokes I profiles (bottom), the mean Stokes V profiles (top) and the N diagnostic null profile (middle). In red are the best fit models from our magnetic analysis. A clear Stokes V signature is detected for Par 1772.

Magnetic analysis

- The modeling of the LSD Stokes V profile can constrain the surface field strength in a detection case, and provide upper limits for a non-detection.
- We sampled the 4-dimensional parameter space (\iota, \beta, \phi, B) which describes a centred dipolar magnetic configuration. \iota is the projected angle of the rotation axis, \beta is the angle between the magnetic axis and the rotational axis, \phi is the rotational phase, B is the polar field strength.
- For each configuration, we calculated the reduced \chi2 of the model fit to the observed LSD Stokes V profile. Interested by the range of possible field strengths admitted by the data, we extracted the best fit for all configurations for a given (B,\beta). Figure 3 shows the field strengths and obliquities that are consistent with the observations within the 3\textalpha limit.
- As we only obtained a single phase observation of each star, there is a broad range of possible field strengths in the case of a non-detection, because when \beta = 90°-\iota, geometries exist for which there is no Stokes V signature, notwithstanding the field

Figure 3: Maps of admissible dipole field strengths and obliquities for \textit{β}1 Ori D and Par 1772. The colorbar represents the minimum \chi2 value for a given (B,\beta) (varying \iota and \phi through all values). Contours show associated probabilities.

Table 1

<table>
<thead>
<tr>
<th>ID</th>
<th>Spec Type</th>
<th>v\textsubscript{sin} (km/s)</th>
<th>B\textsubscript{\phi} (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{β}1 Ori C</td>
<td>O7</td>
<td>24</td>
<td>1100±100 (3\alpha)</td>
</tr>
<tr>
<td>\textit{β}1 Ori A</td>
<td>O9.5</td>
<td>131</td>
<td><600</td>
</tr>
<tr>
<td>\textit{β}1 Ori A</td>
<td>B0</td>
<td>55</td>
<td><300</td>
</tr>
<tr>
<td>\textit{β}1 Ori D</td>
<td>B0.5</td>
<td>49</td>
<td><150</td>
</tr>
<tr>
<td>NU Ori</td>
<td>B1</td>
<td>180</td>
<td>Ask us!</td>
</tr>
<tr>
<td>\textit{β}1 Ori B</td>
<td>B1</td>
<td>32</td>
<td><150</td>
</tr>
<tr>
<td>Par 1772</td>
<td>B2</td>
<td>98</td>
<td>800–2500</td>
</tr>
<tr>
<td>JW 660</td>
<td>B3</td>
<td>210</td>
<td><4000</td>
</tr>
</tbody>
</table>

Discussion

- This study of the Orion stellar cluster represents a complete magnetic survey of a co-evolved and co-environmental population of massive stars.
- A continuous distribution of magnetic fields in neutron star progenitor main sequence stars (above 8 solar masses) has been predicted by Ferrario and Wickramasinghe (2006). Interestingly, we find 2 stars (25%) with fields above 1 kG, whereas W & F predict only 6%.

Figure 4: Predicted magnetic field distribution of massive stars (8-45M\textsubscript{\odot}) on the main sequence. From Ferrario and Wickramasinghe (2006)